Experimental Study on Flow Boiling Heat Transfer Characteristics in Top-Connected Microchannels with a Ni/Ag Micro/Nano Composite Structure

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Microchannel heat exchangers, with their large specific surface area, exhibit high heat/mass transfer efficiency and have a wide range of applications in chemical engineering and energy. To enhance microchannel flow boiling heat transfer, a top-connected microchannel heat exchanger with a Ni/Ag micro/nano composite surface was designed. Using anhydrous ethanol as the working fluid, comparative flow boiling heat transfer experiments were conducted on regular parallel microchannels (RMC), top-connected microchannels (TCMC), and TCMC with a Ni/Ag micro/nano composite surface (TCMC-Ni/Ag). Results show that the TCMC-Ni/Ag’s maximum local heat transfer coefficient reaches 179.84 kW/m2·K, which is 4.1 times that of RMC. Visualization reveals that its strongly hydrophilic micro/nano composite surface increases bubble nucleation density and nucleation frequency. Under medium-low heat flux, the vapor phase converges in the top-connected region while bubbles form on the microchannel surface; under high heat flux, its capillary liquid absorption triggers a thin-liquid-film convective evaporation mode, which is the key mechanism for improved heat transfer performance.

Article activity feed