Impact Assessment of Grid-Connected Solar Photovoltaic Systems on Power Distribution Grid: A Case Study on a Highly Loaded Feeder in Ulaanbaatar Ger District
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Adopting and widely implementing solar photovoltaic (PV) systems are regarded as a promising solution to address energy crises by providing a sustainable and independent electricity supply while significantly reducing greenhouse gas emissions to combat climate change. This encourages households, organizations, and enterprises to install solar PV systems. However, there are many solar PV systems that have been connected to the power distribution grid without following the required procedures. Power distribution grid operators cannot detect the locations of these solar PV systems. Thus, it is necessary to assess the impact of solar PV systems on the power distribution grid in detail, even though there are multiple economic and environmental advantages associated with installing solar PV systems. This study analyzes the changes in an overloaded power distribution grid’s power losses and voltage deviations with solar PV systems. There are two main factors considered for assessing the impact of the solar PV system on the power distribution grid: the total installed capacity of the solar PV systems and the location of the connection. Based on a comparison between the measurement results of three feeders with higher loads in the Ulaanbaatar area, the Dambadarjaa feeder, which has the highest load, was selected. The impact of the solar PV systems on the selected feeder was analyzed by connecting eight solar PV systems at four different locations. Their total installed capacities vary between 25 and 80 percent of the highest daily load of the selected feeder. The results show that the power loss of the feeder can be greatly reduced when the total installed capacity of the solar PV systems is selected optimally, and the location of the connection is at the end of the power distribution grid.