Dynamic Spatial–Temporal Graph Neural Network for Cooling Capacity Prediction in HVDC Systems
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Predicting the cooling capacity of converter valves is crucial for maintaining the stability and efficiency of high-voltage direct current (HVDC) systems. This task involves handling complex, multi-dimensional time-series data with strong inter-variable dependencies and temporal dynamics. Traditional machine learning methods, while effective in static scenarios, struggle to capture these dependencies, and existing deep learning models often lack the ability to jointly model spatial and temporal relationships. To address these challenges, we propose a novel framework that integrates Graph Neural Networks (GNNs) with temporal dynamics. The GNN component captures spatial dependencies by representing the data as a graph, where nodes correspond to system variables, and edges encode their relationships. Temporal dependencies are modeled using temporal convolutional layers and recurrent neural networks (RNNs), enabling the framework to learn both short-term variations and long-term trends. Additionally, a graph attention mechanism dynamically adjusts the importance of variable relationships, improving prediction accuracy and interoperability. The proposed method demonstrates superior performance over traditional machine learning and deep learning baselines on real-world cooling system data. These results validate the effectiveness of the framework for industrial applications such as cooling system monitoring and predictive maintenance.