Comparative Epidemiology of Machine and Deep Learning Diagnostics in Diabetes and Sickle Cell Disease: Africa’s Challenges, Global Non-Communicable Disease Opportunities

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Non-communicable diseases (NCDs) such as Diabetes Mellitus (DM) and Sickle Cell Disease (SCD) pose an escalating health challenge in Africa, underscored by diagnostic deficiencies, inadequate surveillance, and limited health system capacity that contribute to late diagnoses and consequent preventable complications. This review adopts a comparative framework that considers DM and SCD as complementary indicator diseases, both metabolic and genetic, and highlights intersecting diagnostic, infrastructural, and governance hurdles relevant to AI-enabled screening in resource-constrained environments. The study synthesizes epidemiological data across both African and high-income regions and methodically catalogs machine learning (ML) and deep learning (DL) research by clinical application, including risk prediction, image-based diagnostics, remote patient monitoring, privacy-preserving learning, and governance frameworks. Our key observations reveal significant disparities in disease detection and health outcomes, driven by underdiagnosis, a lack of comprehensive newborn screening for SCD, and fragmented diabetes surveillance systems in Africa, despite the availability of effective diagnostic technologies in other regions. The reviewed literature on ML/DL shows high algorithmic accuracy, particularly in diabetic retinopathy screening and emerging applications in SCD microscopy. However, most studies are constrained by small, single-site datasets that lack robust external validation and do not align well with real-world clinical workflows. The review identifies persistent implementation challenges, including data scarcity, device variability, limited connectivity, and inadequate calibration and subgroup analysis. By integrating epidemiological insights into AI diagnostic capabilities and health system realities, this work extends beyond earlier surveys to offer a comprehensive, Africa-centric, implementation-focused synthesis. It proposes actionable operational and policy recommendations, including offline-first deployment strategies, federated learning approaches for low-bandwidth scenarios, integration with primary care and newborn screening initiatives, and enhanced governance structures, to promote equitable and scalable AI-enhanced diagnostics for NCDs.

Article activity feed