Real-Time Deterministic Lane Detection on CPU-Only Embedded Systems via Binary Line Segment Filtering
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The deployment of Advanced Driver-Assistance Systems (ADAS) in economically constrained markets frequently relies on hardware architectures that lack dedicated graphics processing units. Within such environments, the integration of deep neural networks faces significant hurdles, primarily stemming from strict limitations on energy consumption, the absolute necessity for deterministic real-time response, and the rigorous demands of safety certification protocols. Meanwhile, traditional geometry-based lane detection pipelines continue to exhibit limited robustness under adverse illumination conditions, including intense backlighting, low-contrast nighttime scenes, and heavy rainfall. Motivated by these constraints, this work re-examines geometry-based lane perception from a sensor-level viewpoint and introduces a Binary Line Segment Filter (BLSF) that leverages the inherent structural regularity of lane markings in bird’s-eye-view (BEV) imagery within a computationally lightweight framework. The proposed BLSF is integrated into a complete pipeline consisting of inverse perspective mapping, median local thresholding, line-segment detection, and a simplified Hough-style sliding-window fitting scheme combined with RANSAC. Experiments on a self-collected dataset of 297 challenging frames show that the inclusion of BLSF significantly improves robustness over an ablated baseline while sustaining real-time performance on a 2 GHz ARM CPU-only platform. Additional evaluations on the Dazzling Light and Night subsets of the CULane and LLAMAS benchmarks further confirm consistent gains of approximately 6–7% in F1-score, together with corresponding improvements in IoU. These results demonstrate that interpretable, geometry-driven lane feature extraction remains a practical and complementary alternative to lightweight learning-based approaches for cost- and safety-critical ADAS applications.