An Overview of Existing Applications of Artificial Intelligence in Histopathological Diagnostics of Leukemias: A Scoping Review
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Artificial intelligence applications in histopathological diagnostics are rapidly expanding, with particular promise in complex hematological malignancies where diagnostic accuracy remains challenging and subjective. This study undertakes a scoping review to systematically map the extent of research on artificial intelligence applications in histopathological diagnostics of leukemias, examine geographic distribution and methodological approaches, and assess the current state of AI model performance and clinical readiness. A comprehensive search was conducted in the Scopus database covering publications from 2018 to 2025 (as of 12 July 2025), using five targeted search strategies combining AI, histopathology, and leukemia-related terms. Following a three-stage screening protocol, 418 publications were selected from an initial pool of over 75,000 records across multiple countries and research domains. The analysis revealed a marked increase in research output, peaking in 2024 with substantial contributions from India (26.3%), China (17.9%), USA (13.8%), and Saudi Arabia (11.1%). Among 43 documented datasets ranging from 80 to 42,386 images, studies predominantly utilized convolutional neural networks and deep learning approaches. AI models demonstrated high diagnostic accuracy, with 25 end-to-end models achieving an average accuracy of 97.72% compared to 96.34% for 20 classical machine learning approaches. Most studies focused on acute lymphoblastic leukemia detection and subtype classification using blood smear and bone marrow specimens. Despite promising diagnostic performance, significant gaps remain in clinical translation, standardization, and regulatory approval, with none of the reviewed AI systems currently FDA-approved for routine leukemia diagnostics. Future research should prioritize clinical validation studies, standardized datasets, and integration with existing diagnostic workflows to realize the potential of AI in hematopathological practice.