Smooth and Robust Path-Tracking Control for Automated Vehicles: From Theory to Real-World Applications

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Path tracking is a fundamental challenge in the development of automated driving systems, requiring precise control of vehicle motion while ensuring smooth and stable actuation signals. Advancements in this field often lead to increasingly complex control solutions that demand significant computational effort and are difficult to parameterize. A novel variable structure path-tracking control approach that is based on the geometrically optimal solution of a Dubins car offers a promising solution to this challenge. The controller generates an n-smooth and differentially bounded steering angle, and with n + 1 parameters, it can be tuned towards performance, robustness, or low magnitude of the steering angle derivatives. In prior work, this controller demonstrated its performance, robustness, and tunablity in various simulations. In this contribution, we address the challenges of implementing this controller in a real vehicle, including system dead time, low sampling rates, and discontinuous paths. Key adaptations are proposed to ensure robust performance under these conditions. The controller is integrated into a comprehensive automated driving system, incorporating planning and velocity control, and evaluated during an overtaking maneuver (double-lane change) in a real-world setting. Experimental results show that the implemented controller successfully handles system dead time and path discontinuities, achieving consistent tracking errors of less than 0.3 m.

Article activity feed