Millimeter-Wave Interferometric Synthetic Aperture Radiometer Imaging via Non-Local Similarity Learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this study, we propose a novel pixel-level non-local similarity (PNS)-based reconstruction method for millimeter-wave interferometric synthetic aperture radiometer (InSAR) imaging. Unlike traditional compressed sensing (CS) methods, which rely on predefined sparse transforms and often introduce artifacts, our approach leverages structural redundancies in InSAR images through an enhanced sparse representation model with dynamically filtered coefficients. This design simultaneously preserves fine details and suppresses noise interference. Furthermore, an iterative refinement mechanism incorporates raw sampled data fidelity constraints, enhancing reconstruction accuracy. Simulation and physical experiments demonstrate that the proposed InSAR-PNS method significantly outperforms conventional techniques: it achieves a 1.93 dB average peak signal-to-noise ratio (PSNR) improvement over CS-based reconstruction while operating at reduced sampling ratios compared to Nyquist-rate fast fourier transform (FFT) methods. The framework provides a practical and efficient solution for high-fidelity millimeter-wave InSAR imaging under sub-Nyquist sampling conditions.

Article activity feed