Direct Interface Circuits for Resistive, Capacitive, and Inductive Sensors: A Review

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Direct interface circuits (DICs) connect resistive, capacitive, and inductive sensors directly to microcontrollers or FPGAs, eliminating analog conditioning stages and offering compact, low-cost, and low-power instrumentation. This systematic review qualitatively synthesizes research up to March 2025 on DIC operation principles, performance metrics, and application domains. Following PRISMA guidelines, 90 studies from IEEE Xplore, ScienceDirect, MDPI, SpringerLink, Scopus, and Google Scholar were selected based on predefined inclusion criteria. Most studies focused on RC-based circuits (53%), followed by RL-based (5%) and charge transfer capacitive interfaces (5%). RC-DICs demonstrated accuracies below 0.01% using adaptive calibration; RL-DICs achieved resolutions of 10–12 bits with higher cycle requirements, while charge transfer interfaces presented systematic errors up to ±5% due to parasitic capacitances. Environmental monitoring, biomedical sensing, liquid-level control, and vehicular detection were frequent application fields. Due to methodological heterogeneity, findings were synthesized qualitatively without quantitative meta-analysis or formal bias assessments. Future research directions include enhanced noise immunity, simplified calibration, and robust parasitic effect compensation.

Article activity feed