MultiAVSR: Robust Speech Recognition via Supervised Multi-Task Audio–Visual Learning
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Speech recognition approaches typically fall into three categories: audio, visual, and audio–visual. Visual speech recognition, or lip reading, is the most difficult because visual cues are ambiguous and data is scarce. To address these challenges, we present a new multi-task audio–visual speech recognition, or MultiAVSR, framework for training a model on all three types of speech recognition simultaneously primarily to improve visual speech recognition. Unlike prior works which use separate models or complex semi-supervision, our framework employs a supervised multi-task hybrid Connectionist Temporal Classification/Attention loss cutting training exaFLOPs to just 18% of that required by semi-supervised multitask models. MultiAVSR achieves state-of-the-art visual speech recognition word error rate of 21.0% on the LRS3-TED dataset. Furthermore, it exhibits robust generalization capabilities, achieving a remarkable 44.7% word error rate on the WildVSR dataset. Our framework also demonstrates reduced dependency on external language models, which is critical for real-time visual speech recognition. For the audio and audio–visual tasks, our framework improves the robustness under various noisy environments with average relative word error rate improvements of 16% and 31%, respectively. These improvements across the three tasks illustrate the robust results our supervised multi-task speech recognition framework enables.