Semantic Communication on Digital Wireless Communication Systems
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Semantic communication is an effective technological approach for the integration of intelligence and communication, enabling more efficient and context-aware data transmission. In this paper, we propose a bit-conversion-based semantic communication transmission framework to ensure compatibility with existing wireless systems. Specifically, a series of physical layer processing modules in end-to-end transmission are designed. Additionally, we develop a semantic communication simulator to implement and evaluate this framework. To optimize the performance of this framework, we introduce a novel physical layer metric, termed Integer Error Rate (IER), which provides a more suitable evaluation criterion for semantic communication compared to the conventional bit error rate (BER). On the basis of the IER, a minimum Manhattan distance constellation mapping scheme is proposed, which can improve the transmission quality of semantic communication under the same BER condition. Furthermore, we propose a hybrid joint source–channel coding (JSCC) and separate source–channel coding (SSCC) transmission scheme. This scheme decouples the semantic quantization output from the modulation order by segmenting the bits to be transmitted. Simulation results demonstrate that the hybrid JSCC/SSCC transmission scheme can improve the semantic performance, such as the Peak Signal-to-Noise Ratio (PSNR), in low Signal-to-Noise Ratio (SNR) environments while reducing bandwidth usage by up to 50% compared to the benchmark scheme.