A Digital Twin Approach for Soil Moisture Measurement with Physically Based Rendering Simulations and Machine Learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Soil is one of the most important factors of agricultural productivity, directly influencing crop growth, water management, and overall yield. However, inefficient soil moisture monitoring methods, such as manual observation and gravimetric in rural areas, often lead to overwatering or underwatering, wasting resources and reduced yields, and harming soil health. This study offers a digital twin approach for soil moisture measurement, integrating real-time physical data, virtual simulations, and machine learning to classify soil moisture conditions. The digital twin is proposed as a virtual representation of physical soil designed to replicate real-world behavior. We used a multispectral rotocam, and high-resolution soil images were captured under controlled conditions. Physically based rendering (PBR) materials were created from these data and implemented in a game engine to simulate soil properties accurately. Image processing techniques were applied to extract key features, followed by machine learning algorithms to classify soil moisture levels (wet, normal, dry). Our results demonstrate that the Soil Digital Twin replicates real-world behavior, with the Random Forest model achieving a high classification accuracy of 96.66% compared to actual soil. This data-driven approach conveys the potential of the Soil Digital Twin to enhance precision farming initiatives and water use efficiency for sustainable agriculture.

Article activity feed