Towards Dynamic Human–Robot Collaboration: A Holistic Framework for Assembly Planning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The combination of human cognitive skills and dexterity with the endurance and repeatability of robots is a promising approach to modern assembly. However, efficiently allocating tasks and planning an assembly sequence between humans and robots is a manual, complex, and time-consuming activity. This work presents a framework named “Extract–Enrich–Assess–Plan–Review” that facilitates holistic planning of human–robot assembly processes. The framework automatically Extracts data from heterogeneous sources, Assesses the suitability of each assembly step to be performed by the human or robot, and Plans multiple assembly sequence plans (ASP) according to boundary conditions. Those sequences allow for a dynamic adaptation at runtime and incorporate different human–robot interaction modalities that are Synchronized, Cooperative, or Collaborative. An expert remains in the loop to Enrich the extracted data, and Review the results of the Assess and Plan steps with options to modify the process. To experimentally validate this framework, we compare the achieved degree of automation using three different CAD formats. We also demonstrate and analyze multiple assembly sequence plans that are generated by our system according to process time and the interaction modalities used.

Article activity feed