Low-Complexity Model Predictive Control for Series-Winding PMSM with Extended Voltage Vectors

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper proposes a low-complexity model predictive current control (MPCC) strategy based on extended voltage vectors to enhance the computational efficiency and steady-state performance of three-phase series-winding permanent magnet synchronous motors (TPSW-PMSMs). Compared to conventional MPCC methods, this approach increases the number of candidate voltage vectors in the alpha–beta plane from 8 to 38, thereby achieving better steady-state performance. Specifically, the proposed method reduces the total harmonic distortion (THD) by 59%. To improve computational efficiency, a two-stage filtering strategy is employed, significantly reducing the computational burden. The number of voltage vectors traversed in one control period is reduced from 38 to a maximum of 4, achieving an 89% reduction in traversals. Additionally, to mitigate the impact of zero-sequence currents, zero-sequence current suppression is implemented within the control system for effective compensation. By combining low computational complexity, reliable steady-state performance, and real-time control capabilities, this strategy provides an efficient solution for TPSW-PMSM systems. Simulation results validate the effectiveness of the proposed method.

Article activity feed