Cable Temperature Prediction Algorithm Based on the MSST-Net
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
To improve the accuracy of cable temperature anomaly prediction and ensure the reliability of urban distribution networks, this paper proposes a multi-scale spatiotemporal model called MSST-Net (MSST-Net) for medium-voltage power cables in underground utility tunnels. The model addresses the multi-scale temporal dynamics and spatial correlations inherent in cable thermal behavior. Based on the monthly periodicity of cable temperature data, we preprocessed monitoring data from the KN1 and KN2 sections (medium-voltage power cable segments) of Guangzhou’s underground utility tunnel from 2023 to 2024, using the Isolation Forest algorithm to remove outliers, applying Min-Max normalization to eliminate dimensional differences, and selecting five key features including current load, voltage, and ambient temperature using Spearman’s correlation coefficient. Subsequently, we designed a multi-scale dilated causal convolutional module (DC-CNN) to capture local features, combined with a spatiotemporal dual-path Transformer to model long-range dependencies, and introduced relative position encoding to enhance temporal perception. The Sparrow Search Algorithm (SSA) was employed for global optimization of hyperparameters. Compared with five other mainstream algorithms, MSST-Net demonstrated higher accuracy in cable temperature prediction for power cables in the KN1 and KN2 sections of Guangzhou’s underground utility tunnel, achieving a coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of 0.942, 0.442 °C, and 0.596 °C, respectively. Compared to the basic Transformer model, the root mean square error of cable temperature was reduced by 0.425 °C. This model exhibits high accuracy in time series prediction and provides a reference for accurate short- and medium-term temperature forecasting of medium-voltage power cables in urban underground utility tunnels.