Timelike Thin-Shell Evolution in Gravitational Collapse: Classical Dynamics and Thermodynamic Interpretation

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for Λ+=0), modelling a vacuum–energy core surrounded by an asymptotically classical spacetime. The configuration admits a natural thermodynamic interpretation based on a geometric area functional Sshell∝R2 and Tolman redshift, both derived from classical junction conditions and used as an entropy-like coarse-grained quantity rather than a fundamental statistical entropy. Key results include (i) identification of a deceleration mechanism at the balance radius Rthr=(3M/Λ−)1/3 for linear surface equations of state p=wσ; (ii) classification of the allowable radial domain V(R)≤0 for outward evolution; (iii) bounded curvature invariants throughout the shell-supported spacetime region; and (iv) a mass-scaled frequency bound fcRS≤ξ/(33π) for persistent near-shell spectral modes. All predictions follow from standard Israel junction techniques and provide concrete observational tests. The framework offers an analytically tractable example of regular thin-shell collapse dynamics within classical general relativity, with implications for alternative compact object scenarios.

Article activity feed