Counting Cosmic Cycles: Past Big Crunches, Future Recurrence Limits, and the Age of the Quantum Memory Matrix Universe

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We present a quantitative theory of contraction and expansion cycles within the Quantum Memory Matrix (QMM) cosmology. In this framework, spacetime consists of finite-capacity Hilbert cells that store quantum information. Each non-singular bounce adds a fixed increment of imprint entropy, defined as the cumulative quantum information written irreversibly into the matrix and distinct from coarse-grained thermodynamic entropy, thereby providing an intrinsic, monotonic cycle counter. By calibrating the geometry–information duality, inferring today’s cumulative imprint from CMB, BAO, chronometer, and large-scale-structure constraints, and integrating the modified Friedmann equations with imprint back-reaction, we find that the Universe has already completed Npast=3.6±0.4 cycles. The finite Hilbert capacity enforces an absolute ceiling: propagating the holographic write rate and accounting for instability channels implies only Nfuture=7.8±1.6 additional cycles before saturation halts further bounces. Integrating Kodama-vector proper time across all completed cycles yields a total cumulative age tQMM=62.0±2.5Gyr, compared to the 13.8±0.2Gyr of the current expansion usually described by ΛCDM. The framework makes concrete, testable predictions: an enhanced faint-end UV luminosity function at z≳12 observable with JWST, a stochastic gravitational-wave background with f2/3 scaling in the LISA band from primordial black-hole mergers, and a nanohertz background with slope α≃2/3 accessible to pulsar-timing arrays. These signatures provide near-term opportunities to confirm, refine, or falsify the cyclical QMM chronology.

Article activity feed