Born’s Rule from Contextual Relative-Entropy Minimization

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We give a variational characterization of the Born rule. For each measurement context, we project a quantum state ρ onto the corresponding abelian algebra by minimizing Umegaki relative entropy; Petz’s Pythagorean identity makes the dephased state the unique local minimizer, so the Born weights pC(i)=Tr(ρPi) arise as a consequence, not an assumption. Globally, we measure contextuality by the minimum classical Kullback–Leibler distance from the bundle {pC(ρ)} to the noncontextual polytope, yielding a convex objective Φ(ρ). Thus, Φ(ρ)=0 exactly when a sheaf-theoretic global section exists (noncontextuality), and Φ(ρ)>0 otherwise; the closest noncontextual model is the classical I-projection of the Born bundle. Assuming finite dimension, full-rank states, and rank-1 projective contexts, the construction is unique and non-circular; it extends to degenerate PVMs and POVMs (via Naimark dilation) without change to the statements. Conceptually, the work unifies information-geometric projection, the presheaf view of contextuality, and categorical classical structure into a single optimization principle. Compared with Gleason-type, decision-theoretic, or envariance approaches, our scope is narrower but more explicit about contextuality and the relational, context-dependent status of quantum probabilities.

Article activity feed