Complex Time Approach to the Hamiltonian and the Entropy Production of the Damped Harmonic Oscillator
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The present work applies and extends the previously developed Quantitative Geometrical Thermodynamics (QGT) formalism to the derivation of a Hamiltonian for the damped harmonic oscillator (DHO) across all damping regimes. By introducing complex time, with the real part encoding entropy production and the imaginary part governing reversible dynamics, QGT provides a unified geometric framework for irreversible thermodynamics, showing that the DHO Hamiltonian can be obtained directly from the (complex) entropy production in a simple exponential form that is generalized across all damping regimes. The derived Hamiltonian preserves a modified Poisson bracket structure and embeds thermodynamic irreversibility into the system’s evolution. Moreover, the resulting expression coincides in form with the well-known Caldirola–Kanai Hamiltonian, despite arising from fundamentally different principles, reinforcing the validity of the QGT approach. The results are also compared with the GENERIC framework, showing that QGT offers an elegant alternative to existing approaches that maintains consistency with symplectic geometry. Furthermore, the imaginary time component is interpreted as isomorphic to the antisymmetric Poisson matrix through the lens of geometric algebra. The formalism opens promising avenues for extending Hamiltonian mechanics to dissipative systems, with potential applications in nonlinear dynamics, quantum thermodynamics, and spacetime algebra.