Dynamic Balance: A Thermodynamic Principle for the Emergence of the Golden Ratio in Open Non-Equilibrium Steady States

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of PGL(2,Q(5)). Requiring any smooth, strictly convex Lyapunov functional to be invariant under both maps enforces a single non-equilibrium fixed point: the golden mean. We confirm this result by (i) a gradient-flow partial-differential equation, (ii) a birth–death Markov chain whose continuum limit is Fokker–Planck, (iii) a Martin–Siggia–Rose field theory, and (iv) exact Ward identities that protect the fixed point against noise. Microscopic kinetics merely set the approach rate; three parameter-free invariants emerge: a 62%:38% split between entropy production and useful power, an RG-invariant diffusion coefficient linking relaxation time and correlation length Dα=ξz/τ, and a ϑ=45∘ eigen-angle that maps to the golden logarithmic spiral. The same dual symmetry underlies scaling laws in rotating turbulence, plant phyllotaxis, cortical avalanches, quantum critical metals, and even de-Sitter cosmology, providing a falsifiable, unifying principle for pattern formation far from equilibrium.

Article activity feed