Diagnostic Accuracy of an Offline CNN Framework Utilizing Multi-View Chest X-Rays for Screening 14 Co-Occurring Communicable and Non-Communicable Diseases

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Chest radiography is the most widely used diagnostic imaging modality globally, yet its interpretation is hindered by a critical shortage of radiologists, especially in low- and middle-income countries (LMICs). The interpretation is both time-consuming and error-prone in high-volume settings. Artificial Intelligence (AI) systems trained on public data may lack generalizability to multi-view, real-world, local images. Deep learning tools have the potential to augment radiologists by providing real-time decision support by overcoming these. Objective: We evaluated the diagnostic accuracy of a deep learning-based convolutional neural network (CNN) trained on multi-view, hybrid (public and local datasets) for detecting thoracic abnormalities in chest radiographs of adults presenting to a tertiary hospital, operating in offline mode. Methodology: A CNN was pretrained on public datasets (Vin Big, NIH) and fine-tuned on a local dataset from a Nepalese tertiary hospital, comprising frontal (PA/AP) and lateral views from emergency, ICU, and outpatient settings. The dataset was annotated by three radiologists for 14 pathologies. Data augmentation simulated poor-quality images and artifacts. Performance was evaluated on a held-out test set (N = 522) against radiologists’ consensus, measuring AUC, sensitivity, specificity, mean average precision (mAP), and reporting time. Deployment feasibility was tested via PACS integration and standalone offline mode. Results: The CNN achieved an overall AUC of 0.86 across 14 abnormalities, with 68% sensitivity, 99% specificity, and 0.93 mAP. Colored bounding boxes improved clarity when multiple pathologies co-occurred (e.g., cardiomegaly with effusion). The system performed effectively on PA, AP, and lateral views, including poor-quality ER/ICU images. Deployment testing confirmed seamless PACS integration and offline functionality. Conclusions: The CNN trained on adult CXRs performed reliably in detecting key thoracic findings across varied clinical settings. Its robustness to image quality, integration of multiple views and visualization capabilities suggest it could serve as a useful aid for triage and diagnosis.

Article activity feed