Browser-Based Multi-Cancer Classification Framework Using Depthwise Separable Convolutions for Precision Diagnostics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Early and accurate cancer detection remains a critical challenge in global healthcare. Deep learning has shown strong diagnostic potential, yet widespread adoption is limited by dependence on high-performance hardware, centralized servers, and data-privacy risks. Methods: This study introduces a browser-based multi-cancer classification framework that performs real-time, client-side inference using TensorFlow.js—eliminating the need for external servers or specialized GPUs. The proposed model fine-tunes the Xception architecture, leveraging depthwise separable convolutions for efficient feature extraction, on a large multi-cancer dataset of over 130,000 histopathological and cytological images spanning 26 cancer types. It was benchmarked against VGG16, ResNet50, EfficientNet-B0, and Vision Transformer. Results: The model achieved a Top-1 accuracy of 99.85% and Top-5 accuracy of 100%, surpassing all comparators while maintaining lightweight computational requirements. Grad-CAM visualizations confirmed that predictions were guided by histopathologically relevant regions, reinforcing interpretability and clinical trust. Conclusions: This work represents the first fully browser-deployable, privacy-preserving deep learning framework for multi-cancer diagnosis, demonstrating that high-accuracy AI can be achieved without infrastructure overhead. It establishes a practical pathway for equitable, cost-effective global deployment of medical AI tools.

Article activity feed