Fluorescence-Based In Vitro Detection of Wound-Associated Bacteria with a Handheld Imaging System
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: Chronic and acute wounds are often colonized by polymicrobial biofilms, delaying healing and complicating treatment. Rapid, non-invasive detection of pathogenic bacteria is therefore crucial for timely and targeted therapy. This study investigated porphyrin-producing bacterial species using the handheld cureVision imaging system. Methods: In this study, 20 clinically relevant, porphyrin-producing bacterial species were cultured on δ-aminolevulinic acid (ALA)-supplemented agar and analyzed using the handheld cureVision imaging system under 405 nm excitation. Both Red-Green-Blue (RGB) and fluorescence images were acquired under ambient daylight conditions, and fluorescence signals were quantified by grayscale intensity analysis. Results: All tested species exhibited measurable red porphyrin-associated fluorescence, with the highest intensities observed in Klebsiella pneumoniae, Klebsiella oxytoca, Veillonella parvula, and Alcaligenes faecalis. A standardized detectability threshold of 0.25, derived from negative controls, enabled semi-quantitative comparison across species. Statistical analysis confirmed that the fluorescence intensities of all bacterial samples were significantly elevated compared to the control (Wilcoxon signed-rank test and sign test, both p < 0.001; median intensity = 0.835, IQR: 0.63–0.975). Conclusions: These results demonstrate that the cureVision system enables robust and reliable detection of porphyrin-producing wound bacteria, supporting its potential as a rapid, non-invasive diagnostic method for assessing wound colonization and guiding targeted clinical interventions.