Object Detection in Laparoscopic Surgery: A Comparative Study of Deep Learning Models on a Custom Endometriosis Dataset
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: Laparoscopic surgery for endometriosis presents unique challenges due to the complexity of and variability in lesion appearances within the abdominal cavity. This study investigates the application of deep learning models for object detection in laparoscopic videos, aiming to assist surgeons in accurately identifying and localizing endometriosis lesions and related anatomical structures. A custom dataset was curated, comprising of 199 video sequences and 205,725 frames. Of these, 17,560 frames were meticulously annotated by medical professionals. The dataset includes object detection annotations for 10 object classes relevant to endometriosis, alongside segmentation masks for some classes. Methods: To address the object detection task, we evaluated the performance of two deep learning models—FasterRCNN and YOLOv9—under both stratified and non-stratified training scenarios. Results: The experimental results demonstrated that stratified training significantly reduced the risk of data leakage and improved model generalization. The best-performing FasterRCNN object detection model achieved a high average test precision of 0.9811 ± 0.0084, recall of 0.7083 ± 0.0807, and mAP50 (mean average precision at 50% overlap) of 0.8185 ± 0.0562 across all presented classes. Despite these successes, the study also highlights the challenges posed by the weak annotations and class imbalances in the dataset, which impacted overall model performances. Conclusions: In conclusion, this study provides valuable insights into the application of deep learning for enhancing laparoscopic surgical precision in endometriosis treatment. The findings underscore the importance of robust dataset curation and advanced training strategies in developing reliable AI-assisted tools for surgical interventions. The latter could potentially improve the guidance of surgical interventions and prevent blind spots occurring in difficult to reach abdominal regions. Future work will focus on refining the dataset and exploring more sophisticated model architectures to further improve detection accuracy.