Feasibility and Diagnostic Accuracy of Saliva-Based SARS-CoV-2 Screening in Educational Settings and Children Aged <12 Years

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Children have been disproportionately affected during the COVID-19 pandemic. We aimed to assess a saliva-based algorithm for SARS-CoV-2 testing to be used in schools and childcare institutions under pandemic conditions. A weekly SARS-CoV-2 sentinel study in primary schools, kindergartens, and childcare facilities was conducted over a 12-week-period. In a sub-study covering 7 weeks, 1895 paired oropharyngeal and saliva samples were processed for SARS-CoV-2 rRT-PCR testing in both asymptomatic children (n = 1243) and staff (n = 652). Forty-nine additional concurrent swab and saliva samples were collected from SARS-CoV-2 infected patients (patient cohort). The Salivette® system was used for saliva collection and assessed for feasibility and diagnostic performance. For children, a mean of 1.18 mL saliva could be obtained. Based on results from both cohorts, the Salivette® testing algorithm demonstrated the specificity of 100% (95% CI 99.7–100) and sensitivity of 94.9% (95% CI 81.4–99.1) with oropharyngeal swabs as reference. Agreement between sampling systems was 100% for moderate to high viral load situations (defined as Ct-values <33 from oropharyngeal swabs). Comparative analysis of Ct-values derived from saliva vs. oropharyngeal swabs demonstrated a significant difference (mean 4.23; 95% CI 2.48–6.00). In conclusion, the Salivette® system proved to be an easy-to-use, safe and feasible saliva collection method and a more pleasant alternative to oropharyngeal swabs for SARS-CoV-2 testing in children aged 3 years and above.

Article activity feed

  1. SciScore for 10.1101/2021.04.17.21255651: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.