COVID-19-Related Coagulopathy—Is Transferrin a Missing Link?
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
SARS-CoV-2 is the causative agent of COVID-19. Severe COVID-19 disease has been associated with disseminated intravascular coagulation and thrombosis, but the mechanisms underlying COVID-19-related coagulopathy remain unknown. The risk of severe COVID-19 disease is higher in males than in females and increases with age. To identify gene products that may contribute to COVID-19-related coagulopathy, we analyzed the expression of genes associated with the Gene Ontology (GO) term “blood coagulation” in the Genotype-Tissue Expression (GTEx) database and identified four procoagulants, whose expression is higher in males and increases with age (ADAMTS13, F11, HGFAC, KLKB1), and two anticoagulants, whose expression is higher in females and decreases with age (C1QTNF1, SERPINA5). However, the expression of none of these genes was regulated in a proteomics dataset of SARS-CoV-2-infected cells and none of the proteins have been identified as a binding partner of SARS-CoV-2 proteins. Hence, they may rather generally predispose individuals to thrombosis without directly contributing to COVID-19-related coagulopathy. In contrast, the expression of the procoagulant transferrin (not associated to the GO term “blood coagulation”) was higher in males, increased with age, and was upregulated upon SARS-CoV-2 infection. Hence, transferrin warrants further examination in ongoing clinic-pathological investigations.
Article activity feed
-
-
SciScore for 10.1101/2020.06.11.147025: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable P-values indicating the significance of the difference between gene expression/protein abundance in males and females in each given age group were the result of a Wilcoxon rank sum test for independent groups. Cell Line Authentication not detected. Table 2: Resources
Experimental Models: Cell Lines Sentences Resources We also used normalised protein abundance data from a recent publication [7] in which protein abundance in uninfected and SARS-CoV-2-infected Caco-2 cells was quantified. Caco-2suggested: NoneSoftware and Algorithms Sentences Resources Data … SciScore for 10.1101/2020.06.11.147025: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable P-values indicating the significance of the difference between gene expression/protein abundance in males and females in each given age group were the result of a Wilcoxon rank sum test for independent groups. Cell Line Authentication not detected. Table 2: Resources
Experimental Models: Cell Lines Sentences Resources We also used normalised protein abundance data from a recent publication [7] in which protein abundance in uninfected and SARS-CoV-2-infected Caco-2 cells was quantified. Caco-2suggested: NoneSoftware and Algorithms Sentences Resources Data acquisition: Genes associated with the GO term “Blood Coagulation” (GO:0007596) were identified using the online database AmiGO 2 [10]. AmiGOsuggested: (AmiGO, RRID:SCR_002143)Plots were generated using the R package ggplot2. ggplot2suggested: (ggplot2, RRID:SCR_014601)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-