In Situ Alloying of Ti-6Al-7Nb with Copper Using Laser Powder Bed Fusion

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Titanium alloys are widely employed for biomedical implants due to their high strength, biocompatibility, and corrosion resistance, yet their lack of intrinsic antibacterial activity remains a major limitation. Incorporating copper, an antibacterial and β-stabilising element, offers a promising strategy to enhance implant performance. This study investigates Ti-6Al-7Nb modified with 1–9 wt.% Cu via in situ alloying during metal-based laser powder bed fusion (PBF-LB/M), with the aim of assessing processability, microstructural evolution, and mechanical properties. Highly dense samples (>99.9%) were produced across all Cu levels, though chemical homogeneity strongly depended on processing parameters. Increasing Cu content promoted β-phase stabilisation, Ti2Cu precipitation, and pronounced grain refinement. Hardness and yield strength increased nearly linearly with Cu addition, while ductility decreased sharply at ≥5 wt.% Cu due to intermetallic formation, hot cracking, and brittle fracture. These results illustrate both the opportunities and constraints of rapid alloy screening via PBF-LB/M. Overall, moderate Cu additions of 1–3 wt.% provide the most favourable balance between mechanical performance, manufacturability, and potential antibacterial functionality. These findings provide a clear guideline for the design of Cu-functionalised titanium implants and demonstrate the efficiency of in situ alloy screening for accelerated materials development.

Article activity feed