CVD-Grown Carbon Nanofibers on Knitted Carbon Fabric for Enhanced Supercapacitor Performance

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The escalating demand for high-performance energy storage devices has driven extensive research into flexible electrode materials for supercapacitors. Integrating structured carbon nanomaterials with flexible substrates to construct binder-free electrode architectures represents a promising strategy for improving supercapacitor capacitance and rate capability. However, achieving stable, binder-free integration of structure-controlled nanostructured carbon materials with flexible substrates remains a critical challenge. In this study, we report a direct synthesis approach for one-dimensional (1D) carbon nanofibers (CNFs) on commercial flexible carbon fabric (CF) via chemical vapor deposition (CVD). The resulting CNFs exhibit two typical average diameters—approximately 25 nm and 50 nm—depending on the growth temperature, with both displaying highly graphitized structures. Electrochemical characterization of the CNFs/CF composites in 1 M H2SO4 electrolyte revealed typical electric double-layer capacitor (EDLC) behavior. Notably, the 25 nm-CNFs/CF electrode achieves a high specific capacitance of 87.5 F/g, significantly outperforming the 50 nm-CNFs/CF electrode, which reaches 50.2 F/g. Compared with previously reported carbon nanotube CNTs/CF electrodes, the 25 nm-CNFs/CF electrode exhibits superior capacitance and lower resistance.

Article activity feed