Impacts of HLA Genetics on the SARS-CoV-2 Spike Proteins in the Arabian Population
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
(1) Background: Human Leukocyte Antigen (HLA) genetics substantially affect viral infection outcomes. SARS-CoV-2 continues to evolve, potentially escaping HLA presentation and hindering immune control. However, studies on HLA alleles in diverse non-Western populations remain limited. Therefore, we aimed to investigate whether mutations in successive SARS-CoV-2 variants have led to viral escape from common HLA class I alleles in the Saudi Arabian population. (2) Methods: The binding affinities of spike protein epitopes for common Saudi HLA alleles (HLA-A02:01, HLA-C06:02, and HLA-B51:01) were predicted across major SARS-CoV-2 strains using NetMHCpan. One-way ANOVA, one-sample t-tests, and pairwise chi-square analyses were performed to assess the differences in binding affinities and epitope binding categories among strains. (3) Results: One-way ANOVA revealed significant differences in binding affinities among SARS-CoV-2 strains for HLA-A02:01 and HLA-C06:02, but not for HLA-B51:01. One-sample t-tests revealed significant differences in mean binding affinity scores compared to a theoretical mean of 0 for all strain–HLA allele combinations, except for HLA-B51:01. Pairwise chi-square analyses identified significant differences in the epitope binding category distribution between Alpha and Epsilon strains, as well as between Epsilon and Gamma strains for HLA-B51:01. (4) Conclusions: The evolution of SARS-CoV-2 has enabled its escape from common HLA alleles in Saudis. Tracking population-specific HLA binding profiles is crucial for the elucidation of associated evasion mechanisms and guiding the design of future vaccines against COVID-19.