Nonself Mutations in the Spike Protein Suggest an Increase in the Antigenicity and a Decrease in the Virulence of the Omicron Variant of SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Abstract

Despite extensive worldwide vaccination, the current COVID-19 pandemic caused by SARS-CoV-2 continues. The Omicron variant is a recently emerged variant of concern and is now overtaking the Delta variant. To characterize the potential antigenicity of the Omicron variant, we examined the distributions of SARS-CoV-2 nonself mutations (in reference to the human proteome) as five amino acid stretches of short constituent sequences (SCSs) in the Omicron and Delta proteomes. The number of nonself SCSs did not differ much throughout the Omicron, Delta, and reference sequence (RefSeq) proteomes but markedly increased in the receptor binding domain (RBD) of the Omicron spike protein compared to those of the Delta and RefSeq proteins. In contrast, the number of nonself SCSs decreased in non-RBD regions in the Omicron spike protein, compensating for the increase in the RBD. Several nonself SCSs were tandemly present in the RBD of the Omicron spike protein, likely as a result of selection for higher binding affinity to the ACE2 receptor (and, hence, higher infectivity and transmissibility) at the expense of increased antigenicity. Taken together, the present results suggest that the Omicron variant has evolved to have higher antigenicity and less virulence in humans despite increased infectivity and transmissibility.

Article activity feed

  1. SciScore for 10.1101/2021.12.30.474613: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The numbers of nonself SCSs were counted and assigned in sequence maps manually based on the self (0) or nonself (1) assignments calculated by our program and exported into Microsoft Excel [34].
    Microsoft Excel
    suggested: (Microsoft Excel, RRID:SCR_016137)

    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.