Virtual Reality for Hydrodynamics: Evaluating an Original Physics-Based Submarine Simulator Through User Engagement

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

STEM education is constantly seeking innovative methods to enhance student learning. Virtual Reality technology can represent a critical tool for effectively teaching complex engineering subjects. This study evaluates an original Virtual Reality software application, entitled Submarine Simulator, which is developed specifically to support competencies in hydrodynamics within an Underwater Engineering course at MINES Paris—PSL. Our application uniquely integrates a customized physics engine explicitly designed for realistic underwater simulation, significantly improving user comprehension through accurate real-time representation of hydrodynamic forces. The study involved a homogeneous group of 26 fourth-year engineering students, all specializing in engineering and sharing similar academic backgrounds in robotics, electronics, programming, and computer vision. This uniform cohort, primarily aged 22–28, enrolled in the same 3-month course, was intentionally chosen to minimize variations in skills, prior knowledge, and learning pace. Through a combination of quantitative assessments and Confirmatory Factor Analysis, we find that Virtual Reality affordances significantly predict user flow state (path coefficient: 0.811) which then predicts user engagement and satisfaction (path coefficient: 0.765). These findings show the substantial educational potential of tailored Virtual Reality experiences in STEM, particularly in engineering, and highlight directions for further methodological refinement.

Article activity feed