Human Activity Recognition Using Graph Structures and Deep Neural Networks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human activity recognition (HAR) systems are essential in healthcare, surveillance, and sports analytics, enabling automated movement analysis. This research presents a novel HAR system combining graph structures with deep neural networks to capture both spatial and temporal patterns in activities. While CNN-based models excel at spatial feature extraction, they struggle with temporal dynamics, limiting their ability to classify complex actions. To address this, we applied the Firefly Optimization Algorithm to fine-tune the hyperparameters of both the graph-based model and a CNN baseline for comparison. The optimized graph-based system, evaluated on the UCF101 and Kinetics-400 datasets, achieved 88.9% accuracy with balanced precision, recall, and F1-scores, outperforming the baseline. It demonstrated robustness across diverse activities, including sports, household routines, and musical performances. This study highlights the potential of graph-based HAR systems for real-world applications, with future work focused on multi-modal data integration and improved handling of occlusions to enhance adaptability and performance.

Article activity feed