Modeling Thermal Energy Storage Capability of Organic PCMs Confined in a 2-D Cavity

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Organic phase change materials (PCMs) are a useful and increasingly popular choice for thermal energy storage applications such as solar energy and building envelope thermal barriers. Buildings located in high-temperature locations are exposed to extreme weather with high solar radiation intensity. PCM envelopes could act as thermal barriers on the exterior walls to prevent excessive heat gain and save on air conditioning costs. The PCM cavity is represented as a square cavity in this project. This project studies the effect of different parameters on energy transfer through the cavity. These parameters are PCM, heat flux gain (solar radiation), and time period (day hours). One parameter was changed at a time while others remained the same. This model was simulated numerically using ANSYS FLUENT software version 6.3.26. The project was solved as a transient problem and was run for a full day in simulation time. A pressure-based model was used because it is ideal for viscous flow and suitable for mildly compressible and low-speed flow. The PISO algorithm was used here because of the transient nature of the project. Temperature and convection heat transfer flux on the inner surface were recorded to study how the inner temperature and the amount of convective heat flux gain react to different conditions after energy passes the PCM envelope. It was found that Linoleic Acid provides the highest convective heat flux gain, meaning it provides the lowest thermal resistance. On the other hand, Tricosane was found to provide the lowest convective heat flux gain, meaning it provides the highest thermal resistance. For longer days (τq < 1), the PCM was in a liquid form for a longer time, which means less conduction, while for shorter days (τq > 1), the PCM was in a solid form for a longer time.

Article activity feed