Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Grey cast iron brake discs with lamellar graphite (GJL) offer excellent strength and thermal conductivity but are prone to wear and dust emissions. To mitigate these issues, a multilayer coating was applied via Laser Metal Deposition (LMD), comprising a 316L stainless steel base layer and a WC-reinforced top layer. This study examines the microstructural evolution of the coatings under simulated thermomechanical and corrosive conditions using a brake shock corrosion test. Microstructural characterization was performed via Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD), focusing on grain size, orientation, and texture before and after testing. EBSD analysis revealed significant grain coarsening, with sizes increasing from below 20 µm to 30–60 µm, and a shift toward <101> texture. Hardness measurements showed a reduction in the WC-reinforced layer from 478 HV to 432 HV and in the 316L base layer from 232 HV to 223 HV, confirming the influence of thermomechanical stress. SEM analysis revealed a transition from horizontal cracks—caused by residual stress during LMD—to vertical microcracks propagating from the substrate, activated by braking-induced loads. These findings provide insights into the microstructural response of LMD coatings under realistic service conditions and underscore the importance of grain boundary control in designing durable brake disc systems.

Article activity feed