Research on the Effect of Micro-Pit Parameters on Tool Wear in Turning GH4169

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Tools with micro-textures have found wide application in cutting difficult machining materials. The cutting performance of tools is closely related to the arrangement, morphology, and size parameters of micro-textures. In this research, micro-pit tools were used in turning GH4169 in spray cooling. The effect of micro-pit parameters on tool wear was investigated through simulation and cutting experiments. In simulation, a model of cutting GH4169 in spray cooling was built to analyze the wear of micro-pit tools with different parameters, and the optimal combination of micro-pit parameters with excellent anti-wear performance was obtained: when the distance between the micro-pit and tool nose is 60 μm, the diameter of micro-pits is 70 μm, and the pit spacing is 100 μm. In the cutting experiment, micro-pit textures with different parameters were fabricated by femtosecond laser, and cutting experiments were conducted in spray cooling to analyze the wear on the rake face of micro-pit tools. Furthermore, Ansys Fluent was used to simulate the dynamic pressure of oil film on the surface of micro-pits, and the anti-wear mechanism of micro-textured tools was verified. This research provides technical reference for the design and development of micro-textured tools.

Article activity feed