Snowmelt Streamflow Trends over Colorado (U.S.A.) Mountain Watersheds
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Streamflow generated from snowmelt is important, and changing, in snow dominated regions of the world. We used a recently developed technique to estimate the start and end of snowmelt streamflow for 39 gauging stations across Colorado and determined the 40-year trends from 1981 to 2020. Most watersheds showed a trend towards an earlier start (34 watersheds) or end (29 watersheds) of snowmelt streamflow, but the mean of the start and end dates showed mixed trends (earlier in 12 watersheds and later in 20). We determined the correlation between these streamflow snowmelt trends and terrain parameters plus trends in canopy cover, winter precipitation, peak snow water equivalent, and melt-period temperature. There were some significant correlations, primarily for total annual streamflow and the timing and volume of the end of snowmelt streamflow contribution to winter precipitation (decreasing), minimum temperature (warming), and slope (negatively). Higher elevation watersheds tend to be steeper, less snow has been observed at higher elevations, and the snowpack is melting sooner. Snowmelt streamflow trends are partially explained by climate trends and watershed characteristics.