C2H2 Zinc-Finger Transcription Factors Coordinate Hormone–Stress Crosstalk to Shape Expression Bias of the Flavonoid Pathway in Safflower (Carthamus tinctorius L.)
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
C2H2-type zinc-finger transcription factors (ZFPs) play essential roles in plant stress signaling and development; however, their putative functions in safflower have not been systematically characterized. Leveraging the reference genome of the safflower cultivar ‘Jihong-1’ (Carthamus tinctorius L.), we investigated the C2H2 family and identified 62 CtC2H2 genes. Comparative phylogeny with Arabidopsis revealed six subfamilies characterized by shared features such as exon–intron organization and conserved QALGGH motif. Promoter analysis identified multiple light- and hormone-responsive cis-elements (e.g., G-box, Box 4, GT1-motif, ABRE, CGTCA/TGACG), suggesting potential multi-layered regulation. RNA-seq and qRT-PCR analysis identified tissue-specific candidate genes, with CtC2H2-22 emerging as the most petal-specific (6-fold upregulation), alongside CtC2H2-02, CtC2H2-23, and CtC2H2-24 in seeds (~3-fold), and CtC2H2-21 in roots (3-fold). Under abiotic stresses, CtC2H2 genes also demonstrated rapid and dynamic responses. Under cold stress, CtC2H2 genes showed a rapid temporal pattern of expression, with early increase for genes like CtC2H2-45 (>4-fold at 3–6 h) and a delayed increase for CtC2H2-23 at 9 h. A majority of CtC2H2 genes (8/12) were upregulated by ABA treatment, with CtC2H2-47 suggesting 3.5-fold induction. ABA treatment also led to a significant increase (2.5-fold) in total leaf flavonoid content at 24h, which is associated with the significant upregulation of flavonoid pathway genes CtANS (5-fold) and CtCHS (3.3-fold). Simultaneously, UV-B radiation induced two distinct expression patterns: a significant suppression of four genes (CtC2H2-23 decreased to 30% of control) and a complex fluctuating pattern, with CtC2H2-02 upregulated at 48 h (2.8-fold). MeJA elicitation revealed four complex expression profiles, from transient induction (CtC2H2-02, 2.5-fold at 3 h) to multi-phasic oscillations, demonstrating the functional diversity of CtC2H2-ZFPs in jasmonate signaling. Together, these results suggest stress and hormone-responsive expression modules of C2H2 ZFPs for future functional studies aimed at improving stress adaptation and modulating specialized metabolism in safflower.