Molecularly Imprinted Electrochemical Sensor Electrodes Based on Poly-Pyrrole for Sensitive Detection of Morphine in Wastewater

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Morphine is an opioid extracted from the poppy plant and highly effective for moderate to severe pain management. Development of techniques to measure the concentration of this highly addictive drug in various matrices is very important. This work was aimed at the development of a sensitive electrochemical method for detection of morphine in wastewater. Molecularly imprinted (MIP) electrodes were made by the electro-polymerization process using pyrrole as a monomer. Electro-polymerization was performed on glassy carbon electrodes in the presence of morphine before the extraction of the entrapped morphine molecules. Various techniques were employed to monitor the polymerization and response of the fabricated electrodes toward morphine. These techniques included Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The morphine concentration was determined using SWV and CV by measuring the change in the redox peak current of [Fe(CN)6]−3/−4. These MIP electrode sensors were used to analyze morphine concentrations between 0 and 80.0 nM solution. The SWV showed a wider linear response region than CV. The detection limit using SWV was found to be 1.9 nM, while using CV, the detection limit was 2.75 nM. This MIP electrode sensor exhibited specificity when other closely related molecules were included and hence has potential as a cheap alternative technique for analysis of morphine.

Article activity feed