Fayalite-Based Geopolymer Foam

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water to solid ratio, followed by testing their physical and mechanical properties. The phase composition and microstructure of the obtained geopolymer foams were examined using powder XRD, Micro-CT and SEM. The geopolymer foams at optimal water to solid ratio (0.15) demonstrated 73.2% relative porosity, 0.92 g/cm3 apparent density and 1.3 MPa compressive strength. The use of an air-entraining admixture improved compressive strength to 2.8 MPa but lowered the relative porosity to 64.5%. Real-size lightweight panel (300 × 300 × 30 mm) specimens were prepared to measure thermal conductivity coefficient (0.243 W/mK) and evaluate size effect and the reaction to direct fire. This study demonstrates the successful preparation of geopolymer foam products containing 81% fayalite slag, highlighting its potential as a lightweight, insulating and fire-resistant material for sustainable construction applications.

Article activity feed