Neuromechanobiology: Bridging Mechanobiology and Neuroscience Through Evidence and Open Questions

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neuromechanobiology has emerged as a multidisciplinary field at the interface of neuroscience and mechanobiology, aiming to elucidate how mechanical forces influence the development, organization, and function of the nervous system. This review offers a comprehensive overview of the historical evolution of the discipline, its molecular and biophysical foundations, and the experimental strategies employed to investigate it. Recent advances have revealed the pivotal roles of substrate stiffness, mechanical signaling, and force transduction in neural stem proliferation, axon guidance, synapse formation, and neural circuit maturation. All these effects originate at the molecular level and extend to the mesoscopic scale. Disrupted mechanotransduction has been increasingly implicated in neurodevelopmental disorders and neurodegenerative diseases, underscoring its clinical relevance. Key unresolved questions and future directions are also highlighted, with emphasis on the need for integrative approaches to decipher the complex interplay between mechanical forces and neural function.

Article activity feed