Manipulating PARK7/DJ-1 Levels by Genotoxic Stress Alters Noncoding RNAs and Cellular Homeostasis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

DJ-1/PARK7 is a multifunctional protein that plays a vital role in sensing oxidative stress and maintaining redox homeostasis. As an oncogene, DJ-1 influences p53-mediated stress responses and contributes to cancer progression. This study investigates the impact of X-ray-induced DNA breaks on cellular responses under varying DJ-1 expression levels. Using siRNA knockdown and overexpression approaches, transcriptional changes were analyzed by RNA-seq. Naïve cells exhibited only a moderate response to X-ray exposure, including suppression of the cell cycle and activation of stress pathways. In contrast, DJ-1 overexpression caused pronounced gene-expression suppression, particularly affecting ribosomal genes and mitochondria, with 21- and 3.5-fold enrichment, respectively. DJ-1 knockdown led to extensive, non-specific transcriptional changes affecting ~18% of all transcripts (~3400), indicating disrupted cellular homeostasis. Under DJ-1 knockdown, X-ray irradiation resulted in a 3.7-fold enrichment of suppressed DNA-damage response genes. Notably, approximately 25% of non-coding RNAs (ncRNAs) were differentially expressed following DJ-1 manipulation. X-ray-irradiated cells with DJ-1 overexpression also showed reduced expression of SNHG lncRNAs that host snoRNAs, potentially altering miRNA-sponging capacity and ribosomal regulation. These findings underscore DJ-1’s critical role in modulating cellular responses to genotoxic stress, reshaping transcriptional landscapes, and regulating ncRNA profiles. The dual impact of DJ-1 on redox and transcriptional networks positions it as a potential therapeutic target in diseases involving oxidative stress and impaired DNA repair.

Article activity feed