Behavioral Balance in Tryptophan Turmoil: Regional Metabolic Rewiring in Kynurenine Aminotransferase II Knockout Mice

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Cognitive, emotional, and social impairments are pervasive across neuropsychiatric conditions, where alterations in the tryptophan (Trp)–kynurenine pathway and its product kynurenic acid (KYNA) from kynurenine aminotransferases (KATs) have been linked to Alzheimer’s disease, Parkinson’s disease, depression, and post-traumatic stress disorder. In novel CRISPR/Cas9-engineered KAT II knockout (aadat−/− also known as kat2−/−) mice, we observed despair-linked depression-like behavior with peripheral excitotoxicity and oxidative stress. KAT II’s role and its crosstalk with serotonin, indole-pyruvate, and tyrosine–dopamine remain unclear. It is unknown whether deficits extend to cognitive, emotional, motor, and social domains or whether brain tissues mirror peripheral stress. Objectives: Delineate domain-wide behaviors, brain oxidative/excitotoxic profiles, and pathway interactions attributable to KAT II. Results: Behavior was unchanged across strains. kat2−/− deletion remodeled Trp metabolic pathways: 3-hydroxykynurenine increased, xanthurenic acid decreased, KYNA fell in cortex and hippocampus but rose in striatum, quinaldic acid decreased in cerebellum and brainstem. These region-specific changes indicate metabolic stress across the brain and align with higher oxidative load and signs of excitotoxic pressure. Conclusions: Here, we show that KAT II deletion reshapes regional Trp metabolism and amplifies oxidative and excitotoxic imbalance. Although domain-wide behavioral measures, spanning cognition, sociability, and motor coordination, remained largely unchanged, these neurochemical alterations signify a latent emotional bias rather than overt depressive-like behavior. This work, therefore, refines prior findings by delineating KAT II–linked biochemical vulnerability as a potential substrate for stress-reactive affective dysregulation.

Article activity feed