Response Surface Optimization of Biodiesel Production via Esterification Reaction of Methanol and Oleic Acid Catalyzed by a Brönsted–Lewis Catalyst PW/UiO/CNTs-OH
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this study, a Brönsted–Lewis bifunctional acidic catalyst PW/UiO/CNTs-OH was synthesized via the hydrothermal method. The parameters for the esterification reaction of oleic acid with methanol catalyzed by PW/UiO/CNTs-OH were optimized using central composite design-response surface methodology (CCD-RSM). A biodiesel yield of 92.9% was achieved under the optimized conditions, retaining 82.3% biodiesel yield after four catalytic cycles. The enhanced catalytic performance of PW/UiO/CNTs-OH can be attributed as follows: the [Zr6O4(OH)4]12+ anchored on the surface of multi-walled carbon nanotubes (MWCNTs) can serve as nucleation sites for UiO-66, not only encapsulating H3[P(W3O10)4] (HPW) but also reversing the quadrupole moment of MWCNTs to generate Lewis acid sites. In addition, introduction of HPW during synthesis of UiO-66 decreases the solution pH, inducing the protonation of p-phthalic acid (PTA) to disrupt the coordination with the [Zr6O4(OH)4] cluster, thereby creating an unsaturated Zr4+ site with electron pair-accepting capability, which generates Lewis acid sites. EIS analysis revealed that PW/UiO/CNTs-OH has higher electron migration efficiency than UiO-66 and PW/UiO. Furthermore, NH3-TPD and Py-IR analyses showed that PW/UiO/CNTs-OH possessed high densities of Lewis acidic sites of 83.69 μmol/g and Brönsted acidic sites of 9.98 μmol/g.