Programmed Death-1 Ligand 1 Domain Organization, Signaling Motifs, and Interactors in Cancer Immunotherapy

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Immunotherapies targeting the programmed cell death-1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1) pathway sparked a revolution in cancer treatment. These breakthrough therapies work by disrupting the interaction between PD-1—expressed on T cells—and its ligand PD-L1, commonly found on the surface of cancer cells. By using monoclonal antibodies to block this binding, the immune system is unleashed to fight cancer more effectively. However, PD-L1’s role extends far beyond immune evasion. When situated on cancer cells, PD-L1 transmits inhibitory signals through PD-1, silencing the effector functions of T cells. However, PD-L1 also engages in reverse signaling, also called intrinsic signaling, delivering intracellular instructions that contribute to cancer cell survival, even in the absence of PD-1 binding. This signaling cascade shields cancer cells from apoptosis, drives proliferation, regulates DNA damage responses, and even functions as a co-transcriptional transactivator, amplifying cancer’s ability to thrive. The intricate mechanisms behind PD-L1’s intrinsic signaling are under intense investigation. In this review, we provide a historical perspective on the discoveries leading to PD-L1’s structure, signaling motifs, and interacting partners, shedding light on its multifaceted roles and the promising therapeutic possibilities ahead.

Article activity feed