Advances in the Synthesis of Carbon Nanomaterials Towards Their Application in Biomedical Engineering and Medicine
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Carbon nanomaterials that include different forms such as graphene, carbon nanotubes, fullerenes, graphite, nanodiamonds, carbon nanocones, amorphous carbon, as well as porous carbon, are quite distinguished by their unique structural, electrical, and mechanical properties. This plays a major role in making them pivotal in various medical applications. The synthesis methods used for such nanomaterials, including techniques such as chemical vapor deposition (CVD), arc discharge, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD), are able to offer very precise control over material purity, particle size, and scalability, enabling for nanomaterials catered for different specific applications. These materials have been explored in a range of different systems, which include drug-delivery systems, biosensors, tissue engineering, as well as advanced imaging techniques such as MRI and fluorescence imaging. Recent advancements, including green synthesis strategies and novel innovative approaches like ultrasonic cavitation, have improved both the precision as well as the scalability of carbon nanomaterial production. Despite challenges like biocompatibility and environmental concerns, these nanomaterials hold immense promise in revolutionizing personalized medicine, diagnostics, and regenerative therapies. Many of these applications are currently positioned at Technology Readiness Levels (TRLs) 3–4, with some systems advancing toward preclinical validation, highlighting their emerging translational potential in clinical settings. This review is specific in evaluating synthesis techniques of different carbon nanomaterials and establishing their modified properties for use in biomedicine. It focuses on how these techniques establish biocompatibility, scalability, and performance for use in medicines such as drug delivery, imaging, and tissue engineering. The implications of nanostructure behavior in biological environments are further discussed, with emphasis on applications in imaging, drug delivery, and biosensing.