Experimental Evaluation of the Impacts of Suspended Particle Device Smart Windows with Glare Control on Occupant Thermal and Visual Comfort Levels in Winter

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The building sector accounts for approximately 30% of global energy use. The demand for energy-efficient, high-performance buildings is increasing given the increasing awareness of the climate crisis. The building envelope greatly influences overall building energy performance. Considering the broad shift from passive to adaptive systems, smart window technologies are attracting attention. Despite their potential, few scholars have examined occupant comfort in spaces with smart windows. This gap is addressed herein by comparatively analyzing occupants’ responses to thermal and visual environments in a room with a smart window (RoomSW) and a room with a conventional window (RoomCW) in a residential building in winter. The smart window is operated via a glare-prevention tint control strategy. The results reveal that under thermal conditions comparable to those in an actual dwelling, wintertime smart window tinting for glare prevention does not decrease occupants’ thermal sensation or satisfaction. Regarding visual comfort, conditions in RoomSW and RoomCW satisfy the minimum illuminance requirement of 200 lx, but glare occurs in RoomCW with a mean New Daylight Glare Index (DGIN) of 24.1, compared to 9.6 in RoomSW. Questionnaire results indicate greater satisfaction with the luminous environment in RoomSW relative to RoomCW, with scores of +1.4 and +0.2, respectively.

Article activity feed