Beyond Prescriptive Codes: A Validated Linear–Static Methodology for Seismic Design of Soft-Storey RC Structures

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Reinforced concrete buildings with masonry-induced soft-storey irregularities exhibit extreme seismic vulnerability, a critical risk often underestimated by conventional code-based design. Standard equivalent static methods typically fail to capture the intense concentration of seismic demand at the flexible ground level, leading to unconservative designs that do not meet performance objectives. This research proposes a corrective linear–static methodology to address this deficiency. A new Equivalent Lateral Force profile (ELFi1) was developed, derived from modal analyses of 235 representative soft-storey archetypes to accurately account for stiffness heterogeneity. This profile was integrated with a realistic response modification coefficient (Ri1 = 5.04), determined to be 37% lower than the normative R-factor (R = 8) prescribed by code. Nonlinear static analyses confirmed that conventional design resulted in “irreparable” damage (mean Global Damage Index = 0.82). In contrast, redesigning the structure using the proposed ELFi1 and Ri1 methodology successfully mitigated damage concentration, upgrading structural performance to a “repairable” state (mean Global Damage Index = 0.52). Finally, Incremental Dynamic Analysis validated the approach; the redesigned structure satisfied FEMA P695 collapse prevention criteria, achieving an Adjusted Collapse Margin Ratio (ACMR) of 2.10. This study confirms the proposed method is a robust and practical design alternative for soft-storey mechanisms within a simplified linear framework.

Article activity feed