Experimental Assessment of the Dynamic Hygrothermal and Mechanical Behavior of Compressed Earth Block Walls in a Tropical Humid Climate

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study experimentally investigates the mechanical and dynamic hygrothermal behavior of compressed earth block (CEB) walls subjected to simulated climatic cycles representative of a tropical humid environment. Four formulations were tested: raw soil (D0), soil with kenaf fibers (DF), soil with fibers and cement (DFC), and soil with fibers, cement, and slag (DFCL). Performance was assessed in an instrumented bi-climatic cell, enabling the determination of thermal and hygroscopic attenuation factors and time lags, complemented by standardized uniaxial compression and three-point bending tests. DFCL achieved a compressive strength of about 10 MPa, nearly twice that of DF (~6 MPa), exceeding the threshold required for buildings up to R + 1. Regarding hygrothermal behavior, DFCL exhibited the highest thermal attenuation factor (2.24) and a hygroscopic attenuation factor of 2.05, with corresponding time lags of ~0.9 h (thermal) and ~1.1 h (hygroscopic). These results highlight superior thermal inertia and moisture regulation, well suited to the constraints of tropical humid climates. Overall, the findings confirm the potential of kenaf fiber-reinforced cement–slag stabilized CEBs as a sustainable construction solution, particularly for load-bearing walls in hot and humid regions. In addition to technical performance, DFCL also offers environmental and economic advantages, as the use of local fibers and slag reduces Portland cement consumption and costs, reinforcing its sustainability potential in tropical contexts.

Article activity feed