The Relation of Alpha Asymmetry to Physical Activity Duration and Intensity

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: Regular physical activity (PA) benefits mood and cognition, yet the neural markers associated with free-living PA remain unclear. Alpha asymmetry (AA), a neural marker of affective and motivational states, may help predict individuals’ preferred activity intensity and duration. To examine the relationship between resting-state AA in frontal and parietal regions, positive affect, and accelerometer-derived PA metrics were measured. Methods: Fifty-nine participants (age = 21.8 years) wore wrist accelerometers for 7 days, completed resting-state electroencephalography (EEG; alpha power 8–13 Hz), and completed the Positive and Negative Affect Schedule (PANAS). PA metrics included sedentary time (ST), light PA (LPA), moderate-to-vigorous PA (MVPA), average acceleration (AvAcc), intensity gradient (IG), and the most active X minutes (M2–M120). Multiple regression models tested AA to PA associations while accounting for sex and positive affect. Results: Although frontal AA was included as a key neural candidate, the observed associations emerged only at parietal sites. Greater right parietal AA power was associated with the most active M60, M30, M15, M10, and M5. For IG, greater AA power was observed in the left parietal region. No significant associations emerged for LPA, MVPA, AvAcc, M120, or M2. Across models, higher positive affect consistently predicted greater PA engagement. Conclusions: While resting frontal AA is theoretically relevant to motivational processes, the findings indicate that parietal AA more strongly differentiates individuals’ tendencies toward specific PA intensities and durations. Positive affect is associated with PA engagement. These findings identify parietal AA as a promising neural correlate for tailoring PA strategies aimed at sustaining active lifestyles.

Article activity feed