Biophysical Insights into the Binding Interactions of Inhibitors (ICA-1S/1T) Targeting Protein Kinase C-ι
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have demonstrated their specificity and promising efficacy against various cancers. Moreover, the in vivo studies have demonstrated low toxicity levels in acute and chronic murine models. Despite these prior developments, the binding affinities of the inhibitors were never thoroughly explored from a biophysical perspective. Here, we present the biophysical characterizations of PKC-ι in combination with ICA-1S/1T. Various methods based on molecular docking, light scattering, intrinsic fluorescence, thermal denaturation, and heat exchange were applied. The biophysical characteristics including particle sizing, thermal unfolding, aggregation profiles, enthalpy, entropy, free energy changes, and binding affinity (Kd) of the PKC-ι in the presence of ICA-1S were observed. The studies indicate the presence of domain-specific stabilities in the protein–ligand complex. Moreover, the results indicate a spontaneous reaction with an entropic gain, resulting in a possible entropy-driven hydrophobic interaction and hydrogen bonds in the binding pocket. Altogether, these biophysical studies reveal important insights into the binding interactions of PKC-ι and its inhibitors ICA-1S/1T.